Comprehensive Validation Results: Phase Transition QG (T_c=1.1)

Theory: Phase Transition QG (T_c=1.1)

Generated: 2025-07-24 12:03:47

Total Validators Run: 11

Visualizations

All Particles Unified

all_particles_unified.png

Multi Particle Grid

multi_particle_grid.png

Trajectory Comparison

trajectory_comparison.png

Particle Trajectories

Particles Simulated: 4

⚠️ Warning: Low trajectory steps (101). Consider re-running with more steps for better accuracy.

Theory Implementation: PhaseTransition in Show Theory Code (Instance)

Command Line: theory_engine_core.py --steps 100

Test Name Description Purpose/What it Tests Reference Links Dataset Links SOTA Value SOTA Theory Web Reference for SOTA Our System's Score Python File
Conservation Validator Checks energy & angular momentum conservation in trajectories over 1000 steps. Tolerances: energy 1e-12, angular momentum 1e-12, constraint 1e-10 (relative). Tests numerical stability and physical conservation laws in simulated orbits/trajectories. [Will (2014) review on numerical GR](https://link.springer.com/article/10.12942/lrr-2014-4) N/A (simulation-based; tolerances from CODATA/numerical standards) Drift < 1e-12 (relative) General Relativity (exact conservation) [Numerical relativity textbook (Baumgarte 2010)](https://global.oup.com/academic/product/numerical-relativity-9780199691531) PASS - SCORE: 5.34e-15 Show Code
Metric Properties Validator Verifies metric signature (-+++), positive-definiteness of spatial parts, and asymptotic flatness at large r. Ensures metric is physically valid (Lorentzian, no tachyons, Minkowski limit). [Wald (1984) GR textbook](https://press.uchicago.edu/ucp/books/book/chicago/G/bo5978156.html) N/A (analytical properties) Signature (-,+,+,+), flat at infinity General Relativity (Schwarzschild metric) [Metric properties in GR](https://en.wikipedia.org/wiki/Metric_tensor_(general_relativity)) PASS - SCORE: 1.00e-10 Show Code
Mercury Precession Validator Tests perihelion precession of Mercury. Integrates orbit for one century, measures excess precession vs Newtonian prediction. Classic test of GR in weak field regime. Validates spacetime curvature effects on planetary orbits. [Will (2014) Theory and Experiment in Gravitational Physics](https://doi.org/10.1017/CBO9780511564246) N/A (Mercury orbital elements from NASA JPL) 42.98 ± 0.04 arcsec/century General Relativity [Tests of GR - Mercury](https://en.wikipedia.org/wiki/Tests_of_general_relativity#Perihelion_precession_of_Mercury) PASS - SCORE: 42.9889 arcsec/century (Error: 0.0%) Show Code
Light Deflection Validator Calculates deflection of light passing near the Sun. Integrates null geodesics, measures deflection angle at solar limb. Tests spacetime curvature effect on light propagation. Key prediction of GR. [Dyson et al. (1920) Eclipse Expedition](https://doi.org/10.1098/rsta.1920.0009) N/A (solar parameters from IAU) 1.7509 ± 0.0003 arcsec General Relativity [1919 Eclipse - light bending](https://en.wikipedia.org/wiki/Eddington_experiment) PASS - SCORE: 1.7508 arcsec (Error: 0.0%) Show Code
PPN Parameter Validator Computes Parameterized Post-Newtonian parameters (γ, β, etc.) and compares to Solar System constraints. Comprehensive weak-field test framework. Tests all deviations from GR systematically. [Will (2018) PPN review](https://link.springer.com/article/10.12942/lrr-2014-4) N/A (Cassini, lunar ranging constraints) γ = 1.000 ± 0.002, β = 1.000 ± 0.003 General Relativity (γ=β=1) [PPN formalism](https://en.wikipedia.org/wiki/Parameterized_post-Newtonian_formalism) FAIL - SCORE: 2.06e+34 Show Code
Photon Sphere Validator Calculates photon sphere radius and black hole shadow size. Tests strong-field light behavior. Tests extreme gravity regime predictions. Directly observable by Event Horizon Telescope. [EHT Collaboration (2019)](https://doi.org/10.3847/2041-8213/ab0ec7) N/A (M87* and Sgr A* parameters) r_ph = 3GM/c² (Schwarzschild) General Relativity [Black hole shadow](https://en.wikipedia.org/wiki/Black_hole#Photon_sphere) FAIL - SCORE: 2.77e+00 Show Code
Gravitational Wave Validator Generates gravitational wave inspiral waveforms and cross-correlates with GR templates. Tests dynamic strong-field gravity. Validates theory against LIGO/Virgo observations. [Abbott et al. (2016) GW150914](https://doi.org/10.1103/PhysRevLett.116.061102) [GWOSC strain data](https://gwosc.org) Correlation > 0.95 with GR General Relativity [LIGO detections](https://en.wikipedia.org/wiki/List_of_gravitational_wave_observations) FAIL - SCORE: 1.00e-01 Show Code
COW Neutron Interferometry Validator Measures phase shift in neutron interferometry due to gravitational potential difference. Uses Colella-Overhauser-Werner (COW) experiment setup with neutron wavelength 2.2 Å, enclosed area 0.3 cm², height difference 0.1 m. Compares predicted phase shift against observed 2.70 ± 0.21 radians. Tests quantum effects in gravity, specifically gravitational phase shift in interferometry. Validates semiclassical gravity predictions. [Original COW paper (1975)](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.34.1472); [Review on quantum gravity tests (2023)](https://arxiv.org/abs/2305.10478) N/A (theoretical prediction vs. historical measurement; no external dataset file, values hardcoded from paper) 2.70 radians General Relativity (semiclassical limit) [COW experiment Wikipedia with references](https://en.wikipedia.org/wiki/Colella%E2%80%93Overhauser%E2%80%93Werner_experiment) PASS - SCORE: 2.6968 radians (Error: 0.1%) Show Code
CMB Power Spectrum Prediction Validator Computes χ²/dof for TT spectrum (l=2-30) vs. Planck 2018 data. Compares to ΛCDM SOTA (χ²/dof ~53.08). Tests theory's prediction for primordial fluctuations and cosmology. [Planck 2018 results](https://www.aanda.org/articles/aa/abs/2020/09/aa35332-19/aa35332-19.html) [Planck TT spectrum data](https://pla.esac.esa.int/pla/#cosmology) (COM_PowerSpect_CMB-TT-full_R3.01.txt) χ²/dof ≈53.08 ΛCDM cosmology [Planck 2018 cosmology paper](https://arxiv.org/abs/1807.06209) N/A - Not Run Show Code
Primordial GWs Validator Predicts tensor-to-scalar ratio r and tilt n_t vs. standard inflation (r<0.032 upper limit from BICEP/Keck). Tests inflationary predictions and tensor modes. [BICEP/Keck 2023](https://arxiv.org/abs/2310.05224) N/A (upper limits; no full dataset, derived constraints) r < 0.032 Single-field slow-roll inflation [BICEP/Keck collaboration paper (2023)](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.041001) N/A - Not Run Show Code
Trajectory Matching Compares simulated trajectories (e.g., orbits) to baselines like Kerr, with visualizations (checkpoints, multi-particle grids). Checks deviation over 1000 steps. Tests geodesic accuracy and stability against known solutions. [Teukolsky (2015) numerical GR review](https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.87.1083) N/A (simulation-based) Deviation <1e-10 (relative) Kerr metric (exact solution) [Kerr metric Wikipedia](https://en.wikipedia.org/wiki/Kerr_metric) PASS - SCORE: 3.14e-15 (cosine vs Kerr-Newman (a=0.00, q_e=0.50)) Show Code

Summary Statistics

Unified Score: 0.593

Constraint Score: 1.000

Observational Score: 0.524

Prediction Score: 0.000

Trajectory Score: 0.800

Validators Passed: 6/11

Beats SOTA: 0/11